
Abstract

This paper explores a numerical solution of the three dimensional Boussinesq’s prob-
lem. To obtain a solution, the Cauchy-Navier equation is numerically solved on a vari-
able density nodal distribution with a meshless method. The method is implemented in
C++ programming language with modularity in mind, enabling construction of many
different meshless strong form approaches. It is demonstrated that such code can be
efficiently employed to solve a complex problem in parallel, using a popular Radial
Basis Function-generated Finite Differences meshless method. Results are presented
in terms of von Mises stress field, convergence behaviour and execution analysis on
dual CPU machine with total of 12 cores.

Keywords: Navier equation, RBF-FD, OpenMP, sparse system,

1 Introduction

This paper discusses a numerical solution of a contact problem from the field of lin-
ear elasticity, where the goal is to compute displacements within an isotropic half-
space subjected to the concentrated normal traction [1]. Mathematically, the consid-
ered problem is described by a vector partial differential equation (PDE), namely the
Navier-Cauchy equation, which often cannot be solved in a closed form and only nu-
merical solution can be obtained. Traditionally, the Finite Element Method (FEM) [2]
is used to do so; however, alternative approaches, referred to as meshless methods,
emerged as a response to the problematic meshing of realistic 3D domains in FEM
analysis [3, 4, 5].

The development of meshless methods began with weak form methods [6, 7], soon
followed by a strong form variants [8, 3, 9]. The most important feature of the mesh-
less methods is, as suggested by the name, that they do not require a mesh to oper-

1



ate. In a meshless setting, one has to deal with node positioning problem, which is
considered a much easier task than meshing, but still not trivial [10, 11, 12]. In the
most basic variant, meshless methods define all the relations between the nodes solely
through relative inter nodal positions, however, more complex stencil selections can
be used [13] to mitigate problems such as ill conditioning in non-smooth nodal config-
urations [14]. A popular variant of strong form meshless methods is the Radial Basis
Function-generated Finite Differences (RBF-FD) method [15]. The RBF-FD can be
seen, like many of the strong form meshless methods, as a generalization of the Finite
Differences Method. The RBF-FD method is being actively researched [16, 17] and
has been recently used also to solve linear elasticity problems [3].

In this paper we present a modular abstract C++ implementation of a strong form
meshless method [18]. The presented implementation is a part of an open source
project Medusa [19] and can be used to set up many different strong form methods or
solve various problems in one, two, three or more dimensions. We use it here to solve
the Boussinesq’s problem in 3-D with RBF-FD on a machine with two Intel® Xeon®

E5-2620 v3 6 core processors.
The rest of the paper is organized as follows: in section 2 the governing problem

is presented, in section 3 RBF-FD methodology and its modular implementation is
explained, in section 4 the results are discussed, and in section 5 the paper offers some
conclusions and directions for future work.

2 The Boussinesq’s problem

A deformation of elastic homogeneous isotropic half-space under a point load is con-
sidered. The problem is governed by Cauchy-Navier equation

(λ+ µ)∇(∇ · ~u) + µ∇2~u = ~f, (1)

where ~u are unknown displacements, ~f is the loading force, and λ and µ are Lamé
parameters, often expressed in terms of Young’s modulus E and Poisson’s ratio ν.
Another important quantities are the stress tensor σ and strain tensor ε, related via
Hooke’s law as

σ = λ tr(ε)I + 2µε, ε =
∇~u+ (∇~u)T

2
, (2)

where λ and µ are the same Lamé parameters as above and I is the identity tensor.
The Boussinesq’s problem is thoroughly described in [1], where also a closed form
solution in cylindrical coordinates (r, θ and z) is given by

ur =
Pr

4πµ

(
z

R3
− 1− 2ν

R(z +R)

)
, uθ = 0, uz =

P

4πµ

(
2(1− ν)

R
+
z2

R3

)
,

σrr =
P

2π

(
1− 2ν

R(z +R)
− 3r2z

R5

)
, σθθ =

P (1− 2ν)

2π

(
z

R3
− 1

R(z +R)

)
, (3)

σzz = −3Pz3

2πR5
, σrz = −3Prz2

2πR5
, σrθ = 0, σθz = 0,

2



where P is the magnitude of the point force and R =
√
r2 + z2 is the distance of

given point from origin. This solution has a singularity at the origin. Numerically, we
examine (2) with essential boundary conditions given by (3) on a finite domain

Ω = [−1,−0.01]× [−1,−0.01]× [−1,−0.01] (4)

Problem is schematically presented in Figure 1.
The stress field is computed in a post-processing by explicitly applying appropriate

differential operators on the displacement field.

Figure 1: Boussinesq’s problem and the computational domain Ω.

3 Solution procedure

The core of the strong form meshless method is the approximation of the considered
field and its derivatives on overlapping support domains. To put it simply, for each dis-
cretization node, an approximation over a local support domain is constructed. This
approximation is then used to create so-called shape functions that are used to com-
pute approximations of differential operators from the field values. Shape functions
can be computed with different approaches, e.g. least squares [20], collocation [21],
augmented collocation [16], etc., nonetheless, in all cases a following form of approx-
imation function is used

u(p) =
m∑
i=1

aiBi(p), (5)

where ai stand for unknown coefficients and Bi for basis functions. Now, consider a
boundary value problem of form

Lu = f, in Ω (6)
Ru = g, on ∂Ω, (7)

where Ω ⊆ Rd is a domain u is an unknown vector field, L and R are linear partial
differential operators and f and g are known functions. The discrete approximation

3



of PDE is constructed in N points, also referred to as nodes, that are placed in the
domain Ω, where Ni are in the interior and Nb are on the boundary. Positioning of the
nodes is done in present work with a Poisson disk sampling based algorithm [12]. For
all Ni internal points p, the operator L at point p is approximated over support domain
of p as

L|p ≈ χL(p) (8)

where χL(p) is a shape function for operator L at point p and only depends on the
local geometry of the domain. The details on computation of χL can be found in [3,
20]. After computing the shape functions the problem (6) is approximated by a linear
equation

χL(p) · u = f(p), (9)

in all internal nodes, where u is the vector of unknown function values in support
domain of point p and · denotes the dot product. Similar reasoning holds for the
boundary nodes.

In a system assembly phase, operators are approximated in all nodes, which results
in a N ×N sparse system

χL(p1)
...

χL(pNi
)

χR(pNi+1)
...

χR(pNi+Nb
)


u1...
uN

 =

f(p1)
...

f(pN)

 . (10)

In a final step, to obtain an approximation for function u at points pi, above system is
solved.

To ease the implementation of problem solution an additional abstraction operators
is created, acting as an interface between the shape functions and the PDEs. The
operators enable user to explicitly transform governing equations into the C++ code,
as presented in for the Navier equation (1) in Listing 1.

The main solution procedure is typically followed by a post process that computes
stresses from displacement field, i.e. explicitly applies first derivatives on the displace-
ment field [3].

The strongest advantage of the presented method is that all building blocks, namely
nodes positioning, finding support domain, shape functions computation , basis func-
tions, operators, system assembly, and system solution are independent and can be
therefore elegantly coded as abstract modules, not knowing about each other in the
core of their implementation. Such approach offers great flexibility in the implemen-
tation of several different methods. For example, to construct a RBF-FD operators
one combines RBF basis class with a collocation class, computes shapes and uses the
computed shapes to construct operators, as presented in Listing 1. Note, that vector
and scalar fields are implemented as plain arrays using a well developed linear alge-
bra library [22] that also implements or otherwise supports various direct and iterative

4



linear solvers. In the present study we use Pardiso direct solver from the Inter® Math
Kernel Library, which is capable of shared memory parallel execution. Please refer to
our open source Medusa library [19] for more examples and features.

// RBF Gaussians basis
Gaussian<double> g(1.0);
// create RBF-FD approximation
RBFFD<Gaussian<double>, Vec3d> appr(g, 2);
// compute shapes
auto shapes = domain.computeShapes(RBFFD);
// construct implicit operators
auto op = shapes.implicitVectorOperators(M, rhs);

// assemble system
SparseMatrix<double, RowMajor> M(3*N, 3*N);
VectorXd rhs(3*N);
M.reserve(shapes.supportSizesVec());
for (int i : domain.interior()) {

(lam+mu)*op.graddiv(i) + mu*op.lap(i) = 0.0;
}
for (int i : domain.boundary()) {

op.value(i) = analytical(domain.pos(i));
}

solver.compute(M);
Vec3d u = solver.solve(rhs);

Listing 1: Implementation of Navier equation with use of operators.

4 Results

The presented implementation is demonstrated in a solution of The Boussinesq’s prob-
lem with a RBF-FD setup [3], i.e. collocation with support size of 15 neighbouring
nodes and a basis of 15 Gaussian RBFs with shape parameter 1.0. Values of P = −1,
E = 1 and ν = 0.33 were taken for physical parameters of the problem. First, the von
Mises stress σv of the solution is presented in Fig. 2, computed as

σv =
√

1
2
[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2] + 3(σ2

12 + σ2
23 + σ2

31). (11)

To verify the solution the approximated values are compared against closed form
solution. Comparison is presented in terms of relative difference between approxi-
mated and analytical values in L∞ and L1 norms for displacement field, denoted as
e∞(~u) and e1(~u), and in L∞, L1 norms for stress field, denoted as e∞(σ), e1(σ) [3].

5



Figure 2: The numerically computed solution with an enlarged portion around the
contact area. Solutions are presented in computation nodes coloured proportionally to
the values of von Mises stress.

The error with respect to the number of computational nodes is presented in Figure 3.
The solution exhibits expected convergence rates.

Next, we demonstrate the execution performance of presented solution procedure
on the machine with two Intel® Xeon® E5-2620 v3 6 core processors. First, timings
of different modules in sequential mode are analysed. In the left plot of Figure 4 an
absolute time needed to complete certain modules with respect to the problem size
is demonstrated, while on the right plot ratios of computational time for individual
modules are shown. First, expected observation is that with increasing the problem
size, the system solution dominates the execution time. In this study at around N =
104 nodes system solution becomes the most computationally expensive. However,
using different sparse solver, for example Pardiso 6.0 [23] would shift this breaking
point towards higher N .

Next, a shared memory parallel performance is measured in terms of execution
time, speedup Sn = t1/tn, where n is number of utilized cores, and efficiency ef =
Sn/n. In Figure 5, a total speedup (left) and efficiency (right) are presented, again
with respect to the number of nodes. As expected, the total efficiency is primarily
governed by efficiency of a system solution, since most of the time is spent there.
The overall speedup is decent, if we take into account that only naive parallelization
is implemented, i.e. the independent loops were executed in parallel using OpenMP
parallel for with static scheduling, with no special care taken for thread affin-
ity, which can have negative effect on the execution performance due to decreased
cache hit ratios [21]. In Figure 6 speedups for two most expensive modules are pre-
sented, in the left plot a speedup of shape computation and in the right plot speedup
of the system solution. The speedup of shape computation is good, especially when
a low number of threads is utilized. With increasing the number of cores the speedup
reduces, mainly as a result increasing cache invalidation [21]. The speedup of sys-

6



Figure 3: Convergence analysis of presented solution in L∞, and L1 norms for dis-
placement and stress fields.

Figure 4: Execution times (left) and relative computational time (right) of individual
modules.

tem solution is less regular and the parallelisation is only helpful wiht large N . The
speedups might be improved with a different solver choice, however, of the tested
solvers this one performed best.

7



Figure 5: Total speedup (left) and efficiency (right)

5 Conclusions

In this paper we explore parallel performance of the RBF-FD solution procedure on
the Boussinesq’s problem. First, the modular solution procedure and its implemen-
tation is introduced. Although the presented implementation enables constructing of
several different strong form meshless methods and it is not limited to a specific prob-
lem, a popular RBF-FD method and a 3-D linear elasticity problem is chosen for a
benchmarking. The results of the RBF-FD method are evaluated by comparing them
against the known closed form solution and exhibit satisfactory convergence. Timing
of sequential code reveals that for linear stationary problems, the final system solution
dominates the total execution time. However, this can rapidly change for non-linear
problems or time transient simulations, where cumbersome part of the system solution
is required only in the first iteration, while in consequent iterations precomputed de-
composition is used. In case of explicit stepping this becomes even more pronounced,
since the solution procedure does not use an implicit system. Nevertheless, in this
paper we demonstrated that even in the worst case scenario, i.e. a linear stationary
problem, the execution of a meshless solution can be accelerated with naive paral-
lelization that can be trivially implemented in a proposed numerical framework. In
future work we plan to enrich our numerical library with the domain decomposition
module that will enable absolute freedom in parallel execution.

Acknowledgement

The authors would like to acknowledge the financial support of the Research Foun-
dation Flanders (FWO), The Luxembourg National Research Fund (FNR) and Slove-
nian Research Agency (ARRS) in the framework of the FWO Lead Agency project:

8



Figure 6: Speedup of shape function computation (left) and speedup of system solu-
tion (right)

G018916N Multi-analysis of fretting fatigue using physical and virtual experiments,
and the ARRS research core funding No. P2-0095.

References

[1] W.S. Slaughter, The Linearized Theory of Elasticity, Birkhäuser Boston, 2002,
ISBN 978-1-4612-6608-2, Pages 351–352.

[2] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method: Solid Mechanics,
Butterworth-Heinemann, 2000.

[3] J. Slak, G. Kosec, “Refined Meshless Local Strong Form solution of Cauchy–
Navier equation on an irregular domain”, Engineering Analysis with Boundary
Elements, 2018.

[4] Y. Chen, J.D. Lee, A. Eskandarian, Meshless methods in solid mechanics,
Springer, New York, NY, 2006, page 200.

[5] G.R. Liu, Y.T. Gu, An Introduction to Meshfree Methods and Their Program-
ming, Springer, Dordrecht, 2005.

[6] T. Belytschko, Y.Y. Lu, L. Gu, “Element-free Galerkin methods”, International
Journal for Numerical Methods in Engineering, 37(2): 229–256, 1994.

[7] S.N. Atluri, T. Zhu, “A new meshless local Petrov-Galerkin (MLPG) approach
in computational mechanics”, Computational Mechanics, 22(2): 117–127, 1998.

9



[8] E. Oñate, F. Perazzo, J. Miquel, “A finite point method for elasticity problems”,
Computers & Structures, 79(22–25): 2151–2163, 2001.

[9] B. Mavrič, B. Šarler, “Local radial basis function collocation method for linear
thermoelasticity in two dimensions”, International Journal of Numerical Meth-
ods for Heat and Fluid Flow, 25: 1488–1510, 2015.

[10] G. Kosec, “Stability analysis of a meshless method in irregular nodal distribu-
tions for flow problems”, International journal of computational methods and
experimental measurements, 5: 329–336, 2017.

[11] B. Fornberg, N. Flyer, “Fast generation of 2-D node distributions for mesh-
free PDE discretizations”, Computers & Mathematics with Applications, 69(7):
531–544, Apr 2015, ISSN 08981221.

[12] J. Slak, G. Kosec, “Fast generation of variable density node distributions for
mesh-free methods”, in A. Cheng, C.A. Brebbia (Editors), Boundary ele-
ments and other mesh reduction methods XXXXI, 41st International Conference
on Boundary Elements and other Mesh Reduction Methods, September 11–13,
2018, New Forest, UK, Volume 122 of WIT transactions on engineering sciences,
page ?? Wessex institute, WIT press, 2018.

[13] O. Davydov, D.T. Oanh, “Adaptive meshless centres and RBF stencils for Pois-
son equation”, Journal of Computational Physics, 230(2): 287–304, 2011.

[14] T.A. Driscoll, A.R.H. Heryudono, “Adaptive residual subsampling methods for
radial basis function interpolation and collocation problems”, Computers &
Mathematics with Applications, 53(6): 927–939, 2007.

[15] A.I. Tolstykh, D.A. Shirobokov, “On using radial basis functions in a “finite
difference mode” with applications to elasticity problems”, Computational Me-
chanics, 33(1): 68–79, 2003.

[16] B. Fornberg, N. Flyer, “Solving PDEs with radial basis functions”, Acta Numer-
ica, 24: 215–258, May 2015, ISSN 0962-4929, 1474-0508.

[17] V. Bayona, N. Flyer, B. Fornberg, G.A. Barnett, “On the role of polynomials in
RBF-FD approximations: II. Numerical solution of elliptic PDEs”, Journal of
Computational Physics, 332: 257–273, 2017.

[18] J. Slak, G. Kosec, “Parallel coordinate free implementation of local meshless
method”, in K. Skala (Editor), MIPRO 2018: 41st International Convention on
Information and Communication Technology, Electronics and Microelectronics,
May 21–25, 2018, Opatija, Croatia, MIPRO proceedings, pages 194–200. IEEE,
Croatian Society for Information and Communication Technology, Electronics
and Microelectronics, 2018.

10



[19] “Medusa: coordinate free implementation of meshless methods”, http://e6.
ijs.si/medusa/.

[20] G. Kosec, “A local numerical solution of a fluid-flow problem on an irregular
domain”, Advances in Engineering Software, 120: 36–44, 2018.

[21] G. Kosec, M. Depolli, A. Rashkovska, R. Trobec, “Super linear speedup in a
local parallel meshless solution of thermo-fluid problems”, Computers & Struc-
tures, 133: 30–38, 2014.

[22] G. Guennebaud, B. Jacob, et al., “Eigen v3”, 2010, URL: http://eigen.
tuxfamily.org, accessed 2018-01-12.

[23] P.O. Schenk, et al., “Pardiso 6.0”, 2018, URL: https://www.
pardiso-project.org/, accessed 2019-02-02.

11


