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Medusa, a novel library for implementation of strong form mesh-free methods, is described. We identify
and present common parts and patterns among many such methods reported in the literature, such as node
positioning, stencil selection and stencil weight computation. Many different algorithms exist for each part
and the possible combinations offer a plethora of possibilities for improvements of solution procedures that
are far from fully understood. As a consequence there are still many unanswered questions in mesh-free
community resulting in vivid ongoing research in the field. Medusa implements the core mesh-free elements as
independent blocks, which offers users great flexibility in experimenting with the method they are developing,
as well as easily comparing it with other existing methods. The paper describes the chosen abstractions and
their usage, illustrates aspects of the philosophy and design, offers some executions time benchmarks and
demonstrates the application of the library on cases from linear elasticity and fluid flow in irregular 2D and
3D domains.
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1 INTRODUCTION

Mesh-free (also called meshless) methods for solving partial differential equations (PDEs) arose in
1970s and are still an active topic of research in applied mathematics today. In mesh-free methods
the computational domain is represented by a could of points instead of a mesh of elements, as
is typical for mesh-based methods. The weak form mesh-free methods are most often analogous
to the well established Finite Element Method (FEM), while strong form methods are most often
generalization of the Finite Difference Methods (FDM).

Many strong form methods have been proposed throughout the years, starting from Smooth
Particle Hydrodynamics (SPH) [Benz 1990], followed by generalizations of FDM with the Finite
Point method (FPM) [Onate et al. 2001], the Generalized Finite Differences method [Gavete et al.
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2003], and Radial basis function-generated Finite Differences (RBF-FD) [Tolstykh and Shirobokov
2003] to name a few. A significant development in RBF-FD has been a recently reported by using
polyharmonic RBFs augmented with monomials [Bayona et al. 2017] to avoid stagnation errors
and allow control over the rate of convergence. Substantial development has also been reported in
the stabilization of the method in convection dominated regimes [Shankar and Fogelson 2018], in
adaptive solution of elliptic problems [Oanh et al. 2017], in methods for positioning computational
nodes [Slak and Kosec 2019a] and in surface meshless methods [Petras et al. 2018; Suchde and
Kuhnert 2019].

A number of mature software implementations exist for FEM, such as deal.Il [Bangerth et al.
2007], DOLFIN (part of the FEniCS Project) [Logg and Wells 2010] and FreeFem++ [Hecht 2012].
Such a diverse ecosystem of general purpose implementations has not yet been developed for the
field of strong-form meshless methods. There are implementations consisting of Matlab scripts and
domain specific applications, such as MFDMtool [Milewski 2013], GEC_RBFFD [Bayona et al. 2015],
MFree2D [Liu 2002], RBFFD_GPU [Bollig 2014], and even a review paper by Nguyen et al. [Nguyen
et al. 2008] that specifically deals with computer implementation, includes its own set of Matlab
scripts.

Extensible, tested, documented and published general-purpose libraries for mesh-free meth-
ods which would facilitate further research and practical applications of the field are scarce. For
older and established methods, such as SPH, high quality software packages are available, with
DualSPHyiscs [Crespo et al. 2015] being one example. Another such package for particle-based
methods is the Aboria library [Robinson and Bruna 2017]. Two commercial mesh-free implementa-
tions are known to the authors. One is the Midas MeshFree [MIDAS Information Technology Co.
[n.d.]] package, which uses the Implicit Boundary Method and a background integration grid to
perform simulations, and claims to perform “finite element analysis”. The other is the MESHFREE
software [scapos AG [n.d.]], which implements the Finite Pointset Method [Tiwari and Kuhnert
2003] and has an impressive suite of examples. However, it focuses on applications and not on the
development of strong form mesh-free methods in general. In 2014, Hsieh and Pan published ESFM:
An essential software framework for meshfree methods [Hsieh and Pan 2014] which is an object-
oriented C++ framework for computations using weak-form meshless methods and claims to be the
first of its kind. However, it is not publicly available and the authors only shows examples of linear
elasticity problems in the paper. Another package to note is the RBF python package [Hines 2015]
(although not present in the standard Python Package Index), which implements RBF interpolation
and RBF-based PDE solution techniques.

Many packages for PDE solving such as deal.Il, DOLFIN, FreeFem++, DualSPHyiscs, Aboria
and ESFM libraries use the C++ programming language. FreeFem++ implements its own extended
language on top of C++ core, while FEniCS offers Python bindings. Nonetheless, C++ seems to
be the language of choice for many such applications. No open-source C++ library for dealing
with strong form meshless methods is known to authors. Therefore, to help further research and
development in the field of strong form meshless methods, we present an open source C++ library
Medusa (http://e6.ijs.si/medusa).

Our team started the development of Medusa library in 2015 to support our research in the
field [Kosec 2018; Kosec et al. 2019] and to ease implementation of applied solutions [Maksi¢ et al.
2019]. Over time, the interface grew and matured, putting emphasis on modularity, extensibility and
reusability. Similarly to listed FEM libraries, it relies heavily on the C++ template system and allows
the programs to be written independently of the number of spatial dimensions with negligible
run-time and memory overhead. Special care is also taken to increase expressiveness and to be able
to explicitly translate mathematical notation into program source code. However, source code is
still standard compliant C++, which allows the user to use entirety of the C++ ecosystem.
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The rest of the paper is organized as follows: a brief overview of strong-form meshless methods
is presented in section 2, where the most common part of strong form meshless methods are
identified and described. This is followed by the presentation of the library in section 3, which
also includes the relevant abstractions and rationale behind some design decisions. Two more
interesting computational examples are presented in section 4 with measurements of execution
time presented along with comparison to FreeFem++ presented in section 5.

2 STRONG FROM MESH-FREE METHODS

Similarly to many other methods, the general parts of the solution procedure for strong form
mesh-free methods are:

(1) Domain discretization: the geometry of the spatial domain is discretized, by placing computa-
tional nodes and finding their stencils. This part is described in more detail in section 2.1.

(2) Differential operator discretization: the spatial partial differential operators are discretized
using method specific techniques. This part is described in more detail in section 2.2.

(3) PDE discretization: The remaining time-dependent part of the PDE is discretized and then
solved either implicitly or explicitly, with time iteration, or by only solving the implicit sparse
system once, for elliptic problems. This part is described in more detail in section 2.3.

Even if the overall problem solution procedure is more complicated, and involves coupled
equations, additional physical models or non-linearities, such as in computational fluid dynamics,
the above three parts represent the core of the solution procedure. From our experience, these parts
and their components are the elements worthy of abstraction and general implementation.

A more detailed description of the three parts is given in the following subsections, with their
respective implementations presented in sections 3.1, 3.2 and 3.3.

2.1 Domain discretization

A discretization of a bounded domain Q c R¢ consists of N nodes X = {po, p2, . ...pn_1} placed
in the interior and on the boundary of the domain. Each node is assigned a stencil (also called
neighborhood or support) consisting of some nodes near it. We will denote the size of the stencil of
i-th node with n; and the indices of stencil nodes with 7 (i) = (I; 1, I;2, . . ., I; n;)- The stencil of the
i-th node N (i) is the n;-tuple

NG) = @115 P05 5Pl g, )- (1)
Each node should be in its own stencil, and for simplicity we assume that it is the first one, i.e.
I =iholdsforalli=1,...,N.Boundary nodes are assigned outer unit normals 7;.

Generation of nodal distributions has often been considered as an easy and not too relevant
first step. This is partly due to the fact that existing mesh generators could be used to generate a
suitable mesh and the user can simply discard the connectivity information [Liu 2002]. Besides
being conceptually flawed, such approach is also computationally wasteful and does not easily
generalize to higher dimensions. Some authors even reported having difficulties to obtain node
distributions of sufficient quality [Shankar et al. 2018]. As a response, there are currently two
known algorithm for variable density node generation in irregular domains in arbitrary dimensions
with our original algorithm [Slak and Kosec 2019a] published in 2019 and another described in an
arXiv preprint [van der Sande and Fornberg 2019]. Both of these algorithms are implemented in
Medusa. In addition, Medusa provides classic discretizations of basic geometric shapes, support
for gridded nodes and an ability to easily define custom node generation schemes (e.g. hexagonal).
Medusa also offers support for adding so-called “ghost nodes” to the boundary.

The remaining part of the discretization is to define the stencils, which is fully automated and
considered part of the solution procedure in nearly all meshless methods. The most widely used
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type of stencils consist of some number of closest neighbors. Besides those, balanced stencils can
be used in adaptive solutions [Oanh et al. 2017]. Both approaches are implemented in Medusa,
along with the ability to only restrict the stencils to certain node types. It is also simple to define
custom stencil selection algorithms, which are not included by default, for example visibility-based
stencils [Nguyen et al. 2008].

2.2 Differential operator discretization

Most strong-form meshless approximations approximate a partial differential operator £ at a point
p with a linear functional wTL » using an approximation of the form

(Lu)p)~ Y. (wep)ulpy) = W] u, (2)

jeI(p)

where point p is not necessarily one of the computational nodes. However, the stencil indices 7 (p)
and stencil nodes N(p) represent computational nodes. The values w ¢, are called stencil weights
or sometimes shape functions, as a legacy terminology originating from weak-form methods. Other
approximations such as of Hermite type collocation [Li and Mulay 2013] are also possible, but less
common.

We will describe two possibilities to obtain the stencil weights w 1, , which cover many meshless
formulations and are also included in Medusa by default. The first is the generalized weighted
least squares (GWLS) method, which includes many commonly used meshless approximations,
such as SPH approximations [Benz 1990], Finite Point Method [Oniate et al. 2001], Generalized
Finite Difference method [Gavete et al. 2003], radial basis functions-generated finite differences
(RBF-FD) [Tolstykh and Shirobokov 2003], meshless local strong-form method [Slak and Kosec
2019b], Finite Pointset Method [Tiwari and Kuhnert 2003], diffuse approximate methods [Wang
et al. 2012] and many more.

The second is a more specific radial basis functions-generated finite differences (RBF-FD) ap-
proximation with monomial augmentation, which also offers some speed improvements. Other
custom approximation schemes can be implemented and used, such as schemes that put additional
constraints on the center weights to achieve diagonal dominance in differentiation matrices [Suchde
and Kuhnert 2019].

2.2.1 Generalized weighted least squares. An approximation of function u: R? — R around p* is
sought in the form

m * s\ T
ﬁ(p)zZaibi(p_sp)zb(p_sp) o (3)

where b = (b;)7" | is a set of basis functions, b; : R! >R, a = (i), are the unknown coefficients
and s is a positive scaling factor. For simplicity we will assume that I(p) = (1,...,n) and N(p) =
(p1s - - - » pn)- Note that if monomials are chosen for b;, we obtain the same setup as for the standard
moving/weighted least squares (MLS/WLS) formulation [Levin 1998].
Using the known values u; in nearby nodes p;, the error
(4] =12(p,~)—u,~ =b(1%) a —U; (4)
can be computed. A weighted norm of the error vector e = (e;)7", is then minimized. It can be

expressed as
n

llell3., = Z(Wiei)z = [Well; = IW(Ba -~ w3, ®)

i=1
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where B is a rectangular matrix of dimensions n X m with rows containing basis function evaluated

at points p;:
bl (PI;P ) bm (Pl;P )

%\ |m.n w\ T
o I T T e )
- . s j=1,i=1 $ .

bi(252) b (25E)

and W is a diagonal matrix of weights, Wi; = o((p; — p*)/s), where w: R% — (0, o) is a weight

function. Choosing @ = 1 gives the unweighted version. The arguments of b; are shifted and scaled
to ensure better conditioning of matrix B [Nguyen et al. 2008].

If we wanted to construct an approximant from known values of u;, we could just compute

coefficients & with standard methods for solving least square problems, such as normal equations

with Cholesky decomposition, QR decomposition or SVD decomposition. However, to obtain an
approximation of £|,, we express e in closed form using Moore-Penrose pseudoinverse as

a = (WB)"Wu (7)

and substitute it in the definition (3) of # which becomes
i(p) = b (” -

The value (Lu)(p) can be approximated by applying operator L to @ which gives

*

T
) (WB)*Wu. (8)

(Lu)(p) ~ (Li)p) = (Lb) (p P ) (WB) Wu = wl, u, 9)

where the weights wTL , are computed as

= (Lb) ( ) (WB)'W (10)

Note that the computation of Moore-Penrose pseudoinverse is not really necessary, since WTL , can

be computed by first solving the (possibly) underdetermined system

(WB)'y = (Lb)(p ~p")/s) (11)
for y and then computing w,, = Wy. System (11) can be solved using QR, SVD or any other
appropriate decomposition, however, depending on m, n and properties of b;, it can even be square
and positive definite, making it possible to use Cholesky, LDL" or LU decompositions.

2.2.2  Radial basis function-generated finite differences with monomial augmentation. We again
consider a partial differential operator L at a point p of form
n
(Lu)p) ~ Y (W p)ulp)) = W u, (12)
j=1
where p; are the neighboring nodes to p. The unknown weights in approximation (12) can be
computed by enforcing equality for n basis functions. A natural choice are monomials, which are
also used in FDM, resulting in the Finite Point Method [Oriate et al. 2001].
In the RBF-FD discretization the equality is satisfied for radial basis functions ¢;, which are

functions
{¢j(p):¢("P—TP pi—p H) (”P PJ“) ]—1,...,n}, (13)
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generated by a radial function ¢: [0, ) — R and defined over the set of nearby centers p;. The
center of the coordinate system is once again shifted to p* and distances are scaled by s > 0 to
improve conditioning,.

Each ¢;, for j = 1,...,n gives rise to one linear equation
> widipi) = (£4)) (1%) (14)
i=1

for unknowns w; obtained by substituting ¢; for u in (2). These equation form the following linear
system:

llp1—p: llpn=pi p=p°
¢(1T) ¢(T) wy (£¢1)( s )
A =l (15)
¢(||p1—spn||) ¢(||pn;pn||) Wy (£¢n)(’%)
where ¢; have been expanded for clarity. The above system can be written more compactly as
Aw = [¢. (16)

The matrix A is symmetric, and for some ¢ even positive definite. Other approximation properties
are also well studied [Wendland 2004]. Additionally, the computation up to now is the same as
using GWLS with n = m and b; = ¢;.

To ensure consistency up to a certain order, the computation can be augmented with mono-
mials. Let g1, . . ., q; be polynomials forming the basis of the space of d-dimensional multivariate
polynomials up to and including total degree m, with [ = (m;d).
Additional constraints are enforced by extending (16) as

qalpr) - qpy) (Lg1)(p")
A QL |w| _ |t N : .
I HE RS |

: ] tg= : (17)
qi(pn) - qlpn) (La(p*)
where Q is a n X [ matrix of polynomials evaluated at nodes p; and £, is the vector of values
assembled by applying considered operator L to the polynomials at p*.
Weights obtained by solving (17) are taken as values for w z ,, while values A are discarded.

2.3 PDE discretization

With stencil weights w z, , computed, they are mostly used in two main patterns. The first is to
explicitly approximate (Lu)(p), with the field u being known, such as in explicit time iteration,
during linearization of nonlinear PDEs, or simply to obtain a derivative of the field. The second is
in implicit form, when we wish to obtain a field u, such that the field values satisfy a set of linear
equations. This usually happens when solving elliptic problems or during time iteration with at
least partially implicit methods, such as Crank-Nicholson and implicit Euler’s method.

Both usage patterns are described on typical examples in low-level detail in the following
sections. We judged that these patterns of spatial approximation are common enough that suitable
abstractions abstractions are offered in Medusa (see 3.3) to avoid error-prone handling of indices,
code repetition and poor readability.
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2.3.1 Explicit evaluation. Consider a sample time-dependent initial value problem on domain Q

Mpn=Lop.n o, 19
u(p,t) = f(p,t) att =0, (19)
u(p,t) = ga(p,t) on Iy, (20)

%(P, t) = gn(p, 1) on Iy, (21)

where I'; and I}, are Dirichlet and Neumann boundaries, respectively, and f, g4 and g, are known
functions. Using explicit Euler scheme in time, starting at t = 0 with time step At, we define
uf = u(p;, kAt). Time iteration using strong form meshless approximations is performed as follows:

u = f(pi), (22)
uf“ = uf + At (w}’piuf(i)) , for internal nodes p;, (23)
uf* = g4(p;, (k + 1)At), for Dirichlet nodes p;, (29)

o e (R DA) = Sk S ne(wa, )
u; = , for Neumann nodes p;, (25)

d
2=y ne(Wayp 1

where Neumann boundary conditions are obtained by equating the discretized version (28) to
gn and expressing u;. Explicit discretization of Neumann boundary conditions is obtained by
approximating coordinate partial derivatives with their discrete versions

d d d n;
ou T :
ﬁ(l?i, t) = Z ne(Oeu)(p;) = Z newy, o Ui = Z ne Z(Wﬁ{;,pi )jur (26)
=1 =1 =1 =1
d n; n; d
= ne Y Wopp i, = D s, > ne(Wap,); = (27)
=1 j=1 j=1 =1
d n; d
= U Z nf(wﬁg,pi)l + Z uli’j Z nf(wﬁg,pi)j’ (28)
=1 =2 =1

where we used I;; = i and uy(;) is the vector of function values in stencil nodes u;(;) = (u(pj))jel(i).

The equations (22-25) contain explicit evaluations of meshless discretizations on known fields.
Similar expressions, containing the same explicit evaluations can be obtained for other time
discretizations or for vector functions u.

2.3.2  Implicit solution. Consider a boundary value problem

Lu=f in Q, (29)
u= gd on rd7 (30)

ou

— =Jn onI,, (31)

on

where I'; and I}, are Dirichlet and Neumann boundaries, respectively, and f, g4 and g, are known
functions. Each of the above equations is approximated by a linear equation in corresponding
computational nodes. The system of linear equations can be written as Mu = r, where i-th row of
the system corresponds to the equation that holds in node p;. Formally, the matrix M and right-hand
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side r are given by

Mg, =(wgp)y forj=1,...,n; ri = f(pi), for internal nodes p;, (32)

M;;=1, ri = ga(pi), for Dirichlet nodes p;, (33)
d

My, = Z ne(wa,p,)j, forj=1,....n;,  ri=gn(pi), for Neumann nodes p;.  (34)
=1

Matrix M is a sparse matrix with at most Y.V, n; nonzero entries. Solution of the system Mu = r is
the numerical approximation of u.

The equations (32—-34) define the unknown field u implicitly by using stencil weights. Similar
approximations can be obtained for vector equations, or in implicit time stepping schemes.

3 SOFTWARE DESCRIPTION

Looking at existing finite element software packages and based on our experience with imple-
menting strong-form meshless PDE solution procedures, we isolated a set of implementation
requirements:

e Modularity. Ability to change approximation, node generation, stencil selection, and other
algorithms is of crucial importance for fast prototyping that is needed in research. The goal
of Medusa is that different reported meshless methods can be rapidly constructed by using
different combinations of provided classes.

e Dimension independence. The mathematical PDE formulation is independent of the dimension
of the problem, and we strive to conserve this property in the implementation as well.
Implemented approximations, node placing algorithms and operators can be used in any
domain dimensionality simply by changing a template parameter, e.g. there is virtually no
difference between code for solution of problem in 2D or 3D, or any other dimensionality.

o Extensibility. Allowing users to define their own shapes, approximations and operators
enables wide applicability, e.g. implementing additional stabilizations such as upwind or
hyperviscosity is straightforward.

o Readability. A clear mapping from mathematical notation to code helps reduce errors in the
code. Additionally, dealing with objects representing abstract concepts such as operators,
vector fields and domains directly instead of matrices and lists of indices also helps avoid
bugs.

e Small overhead due to the abstraction: the run-time has small and often negligible overheads
in comparison with “bare-bones” implementations.

e Parallelization. When possible, parallelization can be handled internally, so that the program
can remain relatively unchanged if the user decides for parallel execution.

o Ease of use. This involves easy import and export of common file formats, access to examples
and technical documentation.

We designed the Medusa library with above requirements in mind. The library is written in C++
using object oriented approach and C++’s strong template system to achieve modularity, extensibil-
ity and dimension independence. The library has no requirements, apart from the C++ standard
library and optionally the HDF5 C library [Folk et al. 2011] for reading and writing binary HDF5
files. However, we include four open-source third-party libraries, namely the Eigen [Guennebaud
et al. 2010] library for linear algebra, nanoflann [Blanco and Rai 2014] library for spatial-search
structures, tinyformat [Foster et al. 2011] library for simple formatting and and RapidXML [Kalicin-
ski 2011] for XML file processing. These four libraries have been packaged together with Medusa
source code for simplicity. An external version of Eigen can be easily used as well.
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Medusa is licensed under MIT license, but the included libraries Eigen, nanoflann, tinyformat and
RapidXML are licensed under Mozilla Public License (v. 2.0), BSD license, Boost Software License
and dual Boost Software license / MIT license, respectively. The repository also includes the Google
test library which is licensed under BSD 3-Clause “New” or “Revised” License, but is used for unit
testing purposes and not necessary for core functionality.

The official website of the library is http://e6.ijs.si/medusa. The library is developed using the git
versioning system and the development is ongoing on GitLab https://gitlab.com/e62Lab/medusa.
The library uses cmake build system and can be used as a cmake submodule or as a standard
standalone static C++ library. Long compile times associated with large amounts of C++ templates
are somewhat mitigated by separating declarations from template definitions into Medusa_fwd.hpp
and other included files, explicitly instantiating most common class instances and linking them. If
other instances are desired, they can be explicitly instantiated or full template definitions available
in Medusa.hpp can be included.

Quality of implementation is ensured through continuous integration, which build the library
and runs its test suite, documentation generation tools, linters and compiles and runs all examples.
This aims to minimize the risk of regressions, stale documentation or examples and ensures code
validity, uniform code style and validity of system dependencies. The library also includes numerous
assertions, which can be disabled at compile time, that help catch errors earlier in the debugging
phase. We use Google test testing framework to develop and run over 300 tests. The de-facto standard
documentation generation tool Doxygen is used to generate the technical documentation, which is
available at http://e6.ijs.si/medusa/docs. The cpplint style and code checker is used. Additionally,
our wiki page is available at http://e6.ijs.si/medusa/wiki, where more detailed explanations of
examples, the theory behind the methods, practical applications and further information about
development and potential building issues can be found.

The following section describe main modules of Medusa, dealing with domains, approximations
and PDE discretization. Almost all core classes are templated using a vec_t type, which contains
two essential pieces of information, the dimension of the computational domain (vec_t: :dim) and
the scalar type used for numerical computations (vec_t: :scalar_t), e.g. float Or complex<double>.

3.1 Domains

The main class representing domain discretizations is the template <class vec_t> DomainDiscretizat
ion class, which closely resembles the description of domains discretizations given in section 2.1. It
includes a list of d-dimensional points p;, each one has an associated type 7;, with positive z; for
internal nodes and negative 7; for boundary nodes. The boundary nodes also have their outer unit
normals 7i; stored. Additionally, stencil indices I(p;) are stored for each point. Stencils of varying
sizes are supported.

Domain discretizations can be constructing by discretizing one of the predefined shapes, including
d-dimensional spheres, cubes, 2d polygons, 3d polyhedra (given by STL files), as well as their unions,
differences, translations and rotations. Most of them support discretization of boundaries with
arbitrary spacing function h. For discretizations of domain interiors, two dimension independent
variable density node generation algorithms are implemented, GeneralFill and GrainDropFill, based
on [Slak and Kosec 2019a] and [van der Sande and Fornberg 2019], respectively. Other node
generation algorithms, such as grid-based fills and surface filling algorithms are also available.

Two stencil selection algorithms are also available, FindClosest, which constructs stencils using
the indices of defined number of closest nodes, and FindBalancedSupport, which also ensures that
stencils are balanced around the central node.

Listing 1 demonstrates some of the capabilities for creating and handling domains. Figure 1
shows the domains produced by the source code in listing 1. The left part shows a 2D domain with
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relatively coarse variable density discretization, with interior and boundary nodes and also shows
stencils for a few selected nodes. The right part shows a uniform discretization of a 3D model,
obtained from a STL file.

PolygonShape<Vec2d> poly({{-1, -13}, {2, -1}, {2, 13}, {1, 0.53, {-1, 1}3});
BallShape<Vec2d> ball({1, -0.2}, 0.3);

auto shape = (poly - ball).rotate(PI/6) + BoxShape<Vec2d>({-2, 03}, {-1, 13});
auto h = [J(const Vec2d& p) { return 0.025 + p.norm()/20; };
DomainDiscretization<Vec2d> domain = shape.discretizeBoundaryWithDensity(h);
GeneralFill<Vec2d> fill; fill.seed(1);

fill(domain, h);

domain. findSupport(FindClosest(12));

STLShape<Vec3d> stl_shape(STL::read("../data/hip.stl"));

double dx = 0.05;

DomainDiscretization<Vec3d> stl_domain = stl_shape.discretizeBoundaryWithStep(dx);
auto [bot, top] = stl_shape.bbox();

GrainDropFill<Vec3d> gfill(bot, top);
gfill.seed(1).initialSpacing(0.01).maxPoints(le7);

gfill(stl_domain, dx);

Listing 1. Construction and discretization of domains.

N = 469347

® interior nodes N =1193
x  boundary nodes T
normals

15 *  selected nodes
O support nodes

Fookbd il

—

Sk bbb

Fig. 1. Domain discretizations produced by listing 1. A few selected nodes are shown along with their support
nodes in the left figure. The right figure shows a denser discretization of a STL model.

3.2 Approximations

The library currently includes two approximation engines for computing which implement the
procedures described in section 2.2. These are template <class basis_t, class weight_t, class scale_t,
class solver_t> class WLS, template <class rbf_t, class vec_t, class scale_t, class solver_t> class
RBFFD, with reasonable defaults for last few parameters. Template parameters allow for various
combinations of basis functions b;, RBFs ¢, weight functions w, scaling function s, and solvers to
be used. By default, the library includes monomial and RBF bases, Gaussian, Multiquadric, Inverse
multiquadric and Polyharmonic RBFs, three scaling functions, various weights, and a variety of
solvers included with Eigen. It is also easy for users to add their own RBFs, weights and bases.
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Since templates offer a (static) version of duck typing, any class with the interface conforming to
the e.g. RBF concept as described in the documentation, can be used.

The power of this generality is shown in Figure 2, where errors of various approximation setups
are shown. The Laplacian operator was approximated on a regular grid G, of points with spacing
h covering the unit square [0, 1]%. The error of the approximation was computed as

T 2
ep = max |wy, U — (Vu)(p;)l.
B = I |Wos, Ui (Vu)(p:)
The test function was chosen to be u(x, y) = sin(zx) sin(ry). Five different approximation setups
were tested:

(1) RBF-FD with Gaussian RBFs b;(p) = exp(||p — p;l|*/c?), using stencil of n = 9 closest nodes
with no monomial augmentation, ¢ = 100 and with scaling s equal to the distance to the
nearest neighbor. LU decomposition was used to solve the system for stencil weights.

(2) Like (1), but with ¢ = 5 and without scaling (s = 1).

(3) Like (2), but with SVD decomposition.

(4) GWLS with m = 5 monomial basis functions up to order 2, n = 9 closest nodes, Gaussian
weight with o = 1, scaling to closest node and SVD decomposition.

(5) RBF-FD with polyharmonic splines ¢(r) = r° and monomial augmentation of order m = 2
with n = 12 closest nodes.

The definition of these setups in Medusa is shown in listing 2. Stencil sizes are not included, as
their computation was already shown in listing 1.

RBFFD<Gaussian<double>, Vec2d, ScaleToClosest, PartialPivLU<MatrixXd>> approx1(100.0);
RBFFD<Gaussian<double>, Vec2d, NoScale, PartialPivLU<MatrixXd>> approx2(5.0);
RBFFD<Gaussian<double>, Vec2d, NoScale, JacobiSVDWrapper<double>> approx3(5.0);
WLS<Monomials<Vec2d>, GaussianWeight<Vec2d>, ScaleToClosest> approx4(2, 1.0);
RBFFD<Polyharmonic<double, 5>, Vec2d, ScaleToClosest, PartialPivLU<MatrixXd>> approx5({}, 2);

Listing 2. Definition of various important approximations.

These setups present some of the problems and answers in meshless strong form methods in
recent years. The question of choice of the shape parameter for RBFs is a long standing one, since
the shape parameter often presents a trade-off between accuracy and the condition number of the
matrix A [Wendland 2004]. Case (2) exhibits the expected behavior that Gaussian approximations
converge until the condition number is too high, and numerical errors become predominant. Jagged
behavior can be smoothed by using SVD decomposition, however the overall outcome is the same.
A simple remedy for this instability is to scale the shape parameter (or the space) to keep the
condition number constant. This solves the problems with numerical instability, but causes the
approximation to diverge in a characteristic fashion with two local minimums [Bayona et al. 2010].
This lack of convergence is also often called divergence due to “stagnation errors”. Two more
convergent cases are included, one is the Finite point method (Case (4)), which achieves similar
behavior and accuracy to FDM [Oiiate et al. 2001] and another is RBF-FD using PHS augmented
with monomials (Case (5)) [Bayona et al. 2017], where accuracy and convergence order can be
easily controlled through augmentation.
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Fig. 2. Error of approximating the Laplacian with different approximation setups. Less than 1 minute of
computing time was needed to produce the data for this plot.

3.3 Operators
This module defines one of the core functions of the library, which takes a domain discretization
with nodes p;, an approximation engine and a list of operators (Ly, ..., L) and computes and
stores stencil weights (w z; p, )f\il[ j=1» for all operators and all computational nodes in the domain.
These weights are stored in a ShapeStorage class.

The library supports computing shapes for first and second derivatives, as well as for the Laplacian
operator. Note that this allows for construction of arbitrary second order operators as

0
Wrp= Z aa(p)waa,p, for L = Z aa(p)@, (35)
1<|a|<2 1<|a|<2
where |a| = Z?:l a; and % = % are the standard multiindex notations. This would
1

also cover the Laplacian operator, however, equation (35) is not necessarily the most efficient
nor the most numerically stable way of computing the Laplacian for certain basis functions. User
defined operators are supported as well, with the only requirement being that the user implements
application of the operator for a class of basis functions that is used in their code. Our examples
include solving the biharmonic equation to demonstrate this extensibility.

The shapeStorage class stores the computed weights for a chosen set of operators. These shapes
can be used to implicitly express or explicitly compute Lu, as described in sections 2.3 and its
subsections.

For given scalar or vector field u, we directly support most common scalar and vector operators,
such as coordinate derivatives of first and second order, Laplacian, gradient, divergence, gradient
of divergence, directional derivatives, as well as any user defined operators.

Two examples of PDE solutions will be given in this section, to illustrate the functionality of
the library for explicit and implicit solving. Special effort was put into readability of the solution
procedures, to give the user a direct mapping from the mathematical solution procedure to the
source code.
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3.3.1 Explicit operators. Consider the problem of type (18-21):

0
6—1:(x, y,t) = Vu+5 inQ,

u(x,y,t) =0 att =0,
u(x’ y7 t) =X on rd’
0
ey t)=0 onT,,
on

000:13

(36)
(37)
(38)

(39)

on the 2D domain Q constructed in listing 1, where T, is the inner circle boundary and I; the
outer boundary. The problem is solved in listing 3 and the solution procedure follows (22-25). The

solution is shown on the left side of Figure 3.

Listing 3 begins after the domain has been constructed and the sets of indices interior, boundary
and circle, corresponding to the interior, outer boundary in inner boundary nodes, respectively,
have been defined. The computeshapes method computes shapes for Laplacian and first derivatives,
which are then stored. The explicit operators op are a collection of methods, that implement the
spatial parts of the formulas (22-25) from section 2.3.1 and greatly help with the readability of the

solution procedure.

d.findSupport(FindClosest(15));
FindClosest ss(15); ss.forNodes(circle).searchAmong(interior).forceSelf(true);
d.findSupport(ss); // more complex stencil selection

WLS<Gaussians<Vec2d>, GaussianWeight<Vec2d>, ScaleToClosest> approx({9, 100.0}, 1.0);

auto storage = d.computeShapes<sh::lap|sh::d1>(approx);
auto op = storage.explicitOperators();

ScalarFieldd ul(N), u2(N);
ul.setConstant(0);
for (int i : boundary) {
ulli] = u2[i] = d.pos(i, 0);
}
double dt = le-4, max_t = 2.5;
int t_steps = max_t / dt;
for (int t = 0; t < t_steps; ++t) {
for (int i : interior) {
u2[i] = ulli] + dtx(op.lap(ul, i) + 5.0);
}
for (int i : circle) {
u2[i] = op.neumann(ul, i, d.normal(i), 0.0);
3
u2.swap(ul);

Listing 3. Solving the heat equation (36-39) explicitly.
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Fig. 3. Solution of the heat equation (36-39) on the left and convection-diffusion problem (40) on the right.

3.3.2  Implicit operators. Consider a boundary value problem of type (29-31):
-2V +8(2,1,-1)-Vu=1inQ, u=0o0ndQ, (40)

where Q is the right domain in Figure 1. The listing 4 shows the source code needed to solve the
problem implicitly, as described in section 2.3.2.

auto d = DomainDiscretization<vec_t>::load(domain_file, "domain2");
int N = d.size();

d.findSupport(FindClosest(45));

RBFFD<Polyharmonic<double, 3>, vec_t, ScaleToClosest> approx({}, 2);
auto storage = d.computeShapes<sh::lap|sh::d1>(approx);

Eigen: :SparseMatrix<double, Eigen::RowMajor> M(N, N);
M.reserve(storage.supportSizes());
Eigen::VectorXd rhs = Eigen::VectorXd: :Zero(N);
auto op = storage.implicitOperators(M, rhs);
for (int i : d.interior()) {
-2.0%op.lap(i) + 8.0*op.grad(i, {2.0, 1.0, -13}) = 1.0;
}
for (int i : d.boundary()) {
op.value(i) = 0.0;
}
Eigen: :PardisoLU<decltype(M)> solver(M);
Eigen::VectorXd u = solver.solve(rhs);

Listing 4. Solving convection-diffusion equation (40) implicitly.

After computing the weights, the appropriately allocated sparse matrix and right side are assem-
bled. The implicit operators op.1lap hold a reference to the matrix and the right hand side and them
with the appropriate weights, taken from storage, implementing formulas (32-34). This is done
to improve readability; note the similarity between the line of the source code, which defines the
equation in the interior, and the equation (40). The implicit system can also be amended manually,
if desired. The intuitive mathematical syntax supports expressions of form }’, ap Leu = r, where
0Oth, 1st and 2nd derivatives are supported for L., as well as directional derivatives, gradients of
divergence, Laplacian, and any user defined operators. Another benefit of this system is that (in
DEBUG mode) checks are performed that the operators added together always write to the same
matrix row, to avoid indexing errors.
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Overall, the abstractions for implicit and explicit operators are in our opinion one of the best
features of Medusa library. They allow the user to think in terms of field and operators, instead
in terms of arrays and indices, which are much more error prone. This shift has been present in
FEM implementations for a while, with FreeFem++, Fenics and deal.Il implementing these types of
abstractions, however it has not been noted in the strong form community and finite difference
codes are often riddled with poorly readable discretization code clouding the overall problem
solution procedure. Munthe-Kaas and Haveraaen in 1996 introduced the concept of coordinate free
numerics [Munthe-Kaas and Haveraaen 1996], which encompasses this idea, and Medusa has been
investigated in this direction as well [Slak and Kosec 2018].

3.4 Miscellaneous

There are a few additional modules in the library that simplify its usage or offer often needed
utilities. The “types” module implement nicer interfaces and additional functionality to types
used to represent (physical) vectors, scalar fields, vector fields and containers, while retaining full
compatibility with Eigen. Input and output capabilities from and to CSV, XML and HDF file formats
are supported. Some basic integrators for solving ODEs, such as RK4, are also included.

4 EXAMPLES

Plenty of examples are included in the project’s repository and a tutorial for solving the Poisson
equation is available on the website. The examples include many different setups for solving Poisson
boundary value problems, which are used to demonstrate different features. Other examples include
solving problems from electromagnetic scattering, which includes support for complex numbers,
Navier-Stokes equations for fluid simulation, problems from linear elasticity and simulation of
wave propagation. The instruction on compiling and running these examples are available on the
wiki and from the README in the examples folder.
In this paper, we include examples from linear elasticity and fluid mechanics.

4.1 Linear elasticity

Small displacements in an isotropic homogeneous linearly elastic material under stress are described
by Cauchy-Navier equations

A+ V(Y - i) + pV%i = f, (41)

where # are unknown displacements, ]? is the loading body force, and A and y are material constants,
called Lamé parameters. The stress tensor ¢ is computed as
Vi + (Vi)'

o = Atr(e)l + 2ue, €= — (42)

where [ is the identity tensor.

We consider a beam of dimensions L X W in 2D and L X W X T in 3D, occupying the area
[0,L] x [0, W] in 2D and [0, L] X [0, W] X [0, T] in 3D. The beam is fixed on the side with the first
coordinate equal to 0, experiences a downwards traction of size F on the side with the fist coordinate
equal to W and zero traction elsewhere.

Note that this is not the classical Timoshenko beam, although the library was also tested against
that problem [Slak and Kosec 2019b]. Additionally, some cavities (also with no traction boundary
conditions) were added to the domain. The problems were solved for L = 15, W =5, T = 2, with
E=1721-10° v = 0.33 and F = 1000. Polyharmonic radial basis function on 25 nearest nodes
with monomial augmentation od 2nd order were used both in 2D and 3D. The results are shown in
Figure 4, colored according to von Mises stress.
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von Mises stress, N = 60569 ><.)1[]‘ von Mises stress, N = 47315 =104

T T

Fig. 4. Cantilever beams with and without cavities in 2D and 3D. Displacements are multiplied by a factor
10% in 2D and 5 - 10* in 3D.

4.2 Simulation of natural convection

The natural convection problem is governed by coupled Navier-Stokes, mass continuity and heat
transfer equations

1
‘Z_‘t’ +(w-V)o=—Vp+ %Vzv + =b, (43)
V.-v=0, (44)
b= p(1- (T - Trer))g. (45)
T +ov-VT = LVZT, (46)
ot PCp

where v(u, v, w), p, T, u, A, Cp> P> 9> P, Trer and b stand for velocity, pressure, temperature, viscos-
ity, thermal conductivity, specific heat, density, gravitational acceleration, coefficient of thermal
expansion, reference temperature for Boussinesq approximation, and body force, respectively.
The problem is defined on a unit square domain with vertical walls kept at constant different
temperatures, while horizontal walls are adiabatic. In generalization to 3D front and back walls are
also assumed to be adiabatic [Wang et al. 2017]. The problem is solved with implicit time stepping
and projection method for pressure-velocity coupling [Slak and Kosec 2019a]. Results in terms
of velocity and temperature contour plots are presented in Figure 5 for Prandtl number 0.71 and
Rayleigh numbers 108 in 2D and 10° in 3D, respectively. More details about the solution procedure
and results can be found in [Slak and Kosec 2019a].

5 BENCHMARKS

While the design of Medusa is mainly focused on modularity and extensibility, we still take care that
the implementation is reasonably efficient. To this end, we compare the performance of Medusa
with the mature FreeFem++ library for solving PDEs. Note that we will be comparing two different
methods for solving PDEs, which by themselves have different complexity, and it is not the purpose
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Fig. 5. Solution of natural convection problem for Ra=108 in 2D (top left), Ra=10° in 3D (top right), and on
irregular 2D and 3D domains (bottom row).

of this measurements to compare the methods, nor the quality of implementations. We simply wish
to establish that Medusa execution times are in the same ballpark as the FreeFem++ ones for the
same problem.

The comparison is done on the Poisson boundary value problem

-Vu=finQ, u=uyondQ, (47)

for up(x) = H?:I sin(zx;) and f = —V2u, on Q = B(0,1) \ B(0,1/2) in 2D and 3D. Medusa
implementation uses RBF-FD with PHS on n = 9 and n = 35 closest nodes in 2D and 3D, respectively.
FreeFem++ implementation solves the corresponding variational formulation using P1 elements.
The problem itself and the FreeFem++ code were taken from FreeFem++’s own example suite.
FreeFem++ and its dependencies were compiled from source, as was Medusa. Both implementa-
tions were run single-threaded on a laptop computer with Intel(R) Core(TM) i7-77@0HQ CPU
@ 2.80GHz processor with 16 GB of DDR4 RAM. Each time measurement was repeated 9 times and
the median values are shown, with error bars showing standard deviation of the measurements.
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Fig. 6. Errors and execution times of FreeFem++ and Medusa when solving (47) in 2D and 3D. Each time
measurement was repeated 9 times. The median value is shown with error bars representing the standard

deviation.

Both methods attain expected convergence rate N~%/¢ and similar accuracy, with RBF-FD per-

forming slightly worse. The difference in execution times is almost exclusively due to node placing
in Medusa being faster than meshing in FreeFem++. The execution time is also highly dependent
on the number of stencil nodes, which can be lowered or increased, and on the choice of sparse
linear solver and its parameters. The Conjugate Gradient solver was chosen in FreeFem because
it performed best, and BiCGStab with ILUT(5, 1072) preconditioner was chosen for Medusa. The
solvers took approximately the same amount of time.

Parts of the Medusa solution procedure were also timed separately: namely domain discretiza-
tion, stencil selection, stencil weight computation, matrix assembly, preconditioner computation,
iterative solution and post-process error computation. Figure 7 shows these times with respect
to the number of nodes and a ratio of time spent on each part of the solution procedure. These
measurements also show the scaling behavior of different parts of the solution procedure. Com-
putational time complexity of most parts is linear or log linear, with the exception of the linear
solver. For most problems with explicit time iteration, the iteration itself is so time consuming that
domain discretization and weight computation are negligible, since they are only performed once
at the beginning of the iteration.
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Fig. 7. Errors and execution times of FreeFem++ and Medusa when solving (47) in 2D and 3D.

Execution time ratio can vary significantly in different setups. For 2D problems with 2nd order
methods, construction of domain discretization can take more than 50% of the total time. For high
order methods with large support sizes and augmentation orders, weight computation can severely
dominate, even as high as 80%. For more complicated problems and larger N, linear solver can take
up almost 90% of the time.

These separate time measurements also serve as a guideline for optimization and parallelization.
Weight computation is trivially parallelizable and is already included in Medusa for shared memory
architectures, using OpenMP. Support for parallel sparse solvers is also included in Eigen, and
other parallelization efforts are ongoing.

Additionally, we also reviewed the cost of abstractions in performance critical sections by
comparing execution time with a “bare-bones” implementation [Slak and Kosec 2018] and by
analyzing assembly instructions with Compiler Explorer [Godbolt et al. 2019], until we were
satisfied with incurred costs, which are now small to negligible.

6 CONCLUSIONS AND OUTLOOK

In this paper we presented an overview of abstractions and implementation of Medusa, a general
purpose C++ library for solving PDEs with strong-form methods. The library provides core elements
of meshless solution procedures as standalone blocks that can be pieced together or swapped to ease
research, development and testing of meshless methods, all in a dimension independent manner. It
allows to define custom node generation and stencil selection procedures, basis functions, weights
functions, RBFs, approximation schemes, and linear operators, relying heavily on C++ templating
system and most commonly used classes are explicitly instantiated to avoid long compile times. We
have demonstrated this modularity and extensibility by constructing several reported mesh-free
methods and many more examples are available in the documentation. Special attention is also
paid to readability of the resulting code, which closely resembles the mathematical description of
the problem and allows the user to think in terms of operators and fields instead of arrays and
indices. The library is also tested for correctness with a suite of unit tests and offers technical
documentation and other informal discussions on its website. A basic comparison of Medusa with
FreeFem++ on a Poisson problem showed it is comparable in execution time for similar accuracy.

Although Medusa is primarily intended as a research platform for mesh-free community, it
offers enough features for solving 3D coupled problems, such as illustrated thermo-fluid transport
problem in an irregular 3D domain. Other problems, such as linear elasticity, complex-valued
electromagnetic scattering and wave propagation are also included in the examples.

The ongoing and future development of Medusa is aimed in several directions. One is to increase
the geometric capabilities of Medusa, by adding a module for discretization of parametric surfaces,
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and potentially extending it to handle Computer-Aided Design objects, pushing Medusa a step
closer to the engineering simulation software.

Another important directions is parallelism, since at the moment only naive shared memory
parallelization of modules that are trivial to execute in parallel is offered. We are developing a
parallel version of node positioning algorithms as well as a domain decomposition module required
for distributed parallel execution.

Throughout all other development we will also (albeit conservatively) extend the set of approx-
imations, bases, node generation algorithms and other elements offered by default, with useful
developments from ongoing research in core meshless areas. Potential future additions include
better support for adaptivity and coupled problems.

ACKNOWLEDGMENTS

The authors would like to acknowledge other contributors to the Medusa library (and its previous
unpublished versions), listed in alphabetical order: Urban Duh, Mitja JanAI)iAl), Maks Kolman,
Jure Lapajne, Jure MoAI)nik - Berljavac, Anja PetkoviAG, Anja Pirnat, Ivan Pribec, TjaA; SilovAgek
and Blaz StojanoviAl).

The authors would also like to acknowledge the financial support of the Slovenian Research
Agency (ARRS) research core funding No. P2-0095 and the Young Researcher program PR-08346.

REFERENCES

W. Bangerth, R. Hartmann, and G. Kanschat. 2007. deal.Il - a General Purpose Object Oriented Finite Element Library. ACM
Trans. Math. Softw. 33, 4 (2007), 24/1-24/27. https://doi.org/10.1145/1268776.1268779

Victor Bayona, Natasha Flyer, Bengt Fornberg, and Gregory A. Barnett. 2017. On the role of polynomials in RBF-FD
approximations: II. Numerical solution of elliptic PDEs. J. Comput. Phys. 332 (2017), 257-273. https://doi.org/10.1016/].
jcp.2016.12.008

V. Bayona, N. Flyer, G. M. Lucas, and A. J. G. Baumgaertner. 2015. A 3-D RBF-FD solver for modeling the atmospheric global
electric circuit with topography (GEC-RBFFD v1. 0). Geosci. Model Dev. 8, 10 (2015), 3007. https://doi.org/10.5194/gmd-8-
3007-2015

Victor Bayona, Miguel Moscoso, Manuel Carretero, and Manuel Kindelan. 2010. RBF-FD formulas and convergence
properties. J. Comput. Phys. 229, 22 (2010), 8281-8295. https://doi.org/10.1016/j.jcp.2010.07.008

W. Benz. 1990. Smooth particle hydrodynamics: a review. In The numerical modelling of nonlinear stellar pulsations. Springer,
269-288. https://doi.org/10.1007/978-94-009-0519-1_16

Jose Luis Blanco and Pranjal Kumar Rai. 2014. nanoflann: a C++ header-only fork of FLANN, a library for Nearest Neighbor
(NN) with KD-trees. https://github.com/jlblancoc/nanoflann. https://github.com/jlblancoc/nanoflann

Evan Bollig. 2014. Radial Basis Function Finite Differences on the GPU. https://github.com/bollig/rbffd_gpu/

Alejandro J. C. Crespo, José M. Dominguez, Benedict D. Rogers, Moncho Gomez-Gesteira, S. Longshaw, R. Canelas, Renato
Vacondio, A. Barreiro, and O. Garcia-Feal. 2015. DualSPHysics: Open-source parallel CFD solver based on Smoothed
Particle Hydrodynamics (SPH). Comput. Phys. Commun. 187 (2015), 204-216. https://doi.org/10.1016/j.cpc.2014.10.004

Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. 2011. An overview of the HDF5 technology
suite and its applications. In Proceedings of the EDBT/ICDT 2011 Workshop on Array Databases. ACM, 36-47. https:
//doi.org/10.1145/1966895.1966900

Chris Foster et al. 2011. tinyformat: Minimal, type safe printf replacement library for C++ . http://rapidxml.sourceforge.net.

L Gavete, ML Gavete, and JJ Benito. 2003. Improvements of generalized finite difference method and comparison with other
meshless method. Applied Mathematical Modelling 27, 10 (2003), 831-847. https://doi.org/10.1016/S0307-904X(03)00091-X

Matt Godbolt, RubAln RincAsn, Patrick Quist, Austin Morton, Jared Wyles, Chedy Najjar, Simon Brand, and Filipe Cabecinhas.
2019. Compiler explorer. https://github.com/mattgodbolt/compiler-explorer. https://godbolt.org/

Gaél Guennebaud, Benoit Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

Frédéric Hecht. 2012. New development in FreeFem++. Journal of numerical mathematics 20, 3-4 (2012), 251-266. https:
//doi.org/10.1515/jnum-2012-0013

Trever Hines. 2015. RBF: Python package containing the tools necessary for radial basis function (RBF) applications.
https://github.com/treverhines/RBF

Yo-Ming Hsieh and Mao-Sen Pan. 2014. ESFM: An essential software framework for meshfree methods. Adv. Eng. Software
76 (2014), 133-147. https://doi.org/10.1016/j.advengsoft.2014.06.006

ACM Trans. Math. Softw., Vol. 0, No. 0, Article 000. Publication date: TODO.


https://doi.org/10.1145/1268776.1268779
https://doi.org/10.1016/j.jcp.2016.12.008
https://doi.org/10.1016/j.jcp.2016.12.008
https://doi.org/10.5194/gmd-8-3007-2015
https://doi.org/10.5194/gmd-8-3007-2015
https://doi.org/10.1016/j.jcp.2010.07.008
https://doi.org/10.1007/978-94-009-0519-1_16
https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann
https://github.com/bollig/rbffd_gpu/
https://doi.org/10.1016/j.cpc.2014.10.004
https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1145/1966895.1966900
http://rapidxml.sourceforge.net
https://doi.org/10.1016/S0307-904X(03)00091-X
https://godbolt.org/
https://doi.org/10.1515/jnum-2012-0013
https://doi.org/10.1515/jnum-2012-0013
https://github.com/treverhines/RBF
https://doi.org/10.1016/j.advengsoft.2014.06.006

Medusa: A C++ Library for solving PDEs using Strong Form Mesh-Free methods 000:21

Marcin Kalicinski. 2011. RapidXml. https://github.com/c42f/tinyformat.

Gregor Kosec. 2018. A local numerical solution of a fluid-flow problem on an irregular domain. Advances in engineering
software 120 (2018), 36-44.

Gregor Kosec, Jure Slak, Matja Depolli, Roman Trobec, Kyvia Pereira, Satyendra Tomar, Thibault Jacquemin, Stéphane PA
Bordas, and Magd Abdel Wahab. 2019. Weak and strong from meshless methods for linear elastic problem under fretting
contact conditions. Tribology International (2019).

David Levin. 1998. The approximation power of moving least-squares. Math. Comput. 67, 224 (1998), 1517-1531. https:
//doi.org/10.1090/s0025-5718-98-00974-0

Hua Li and Shantanu S Mulay. 2013. Meshless methods and their numerical properties. CRC press.

Gui-Rong Liu. 2002. Mesh free methods: moving beyond the finite element method. CRC press. https://doi.org/10.1201/
9781420040586

Anders Logg and Garth N. Wells. 2010. DOLFIN: Automated finite element computing. ACM Transactions on Mathematical
Software (TOMS) 37, 2 (2010), 20. https://doi.org/10.1145/1731022.1731030

M. Maksi¢, V. Djurica, A. Souvent, J. Slak, M. Depolli, and G. Kosec. 2019. Cooling of overhead power lines due to
the natural convection. International Journal of Electrical Power & Energy Systems 113 (Dec. 2019), 333-343. https:
//doi.org/10.1016/j.ijepes.2019.05.005

Ltd. MIDAS Information Technology Co. [n.d.]. midas MeshFree. http://www.midasmeshfree.com/

Stawomir Milewski. 2013. Selected computational aspects of the meshless finite difference method. Numerical Algorithms
63, 1 (2013), 107-126. https://doi.org/10.1007/s11075-012-9614-6

H. Munthe-Kaas and M. Haveraaen. 1996. Coordinate free numerics: closing the gap between ‘pure’ and ‘applied’ mathematics.
ZAMM Z. angew. Math. Mech 76, S1 (1996), 487-488.

V. P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot. 2008. Meshless methods: a review and computer implementation aspects.
Math. Comput. Simul 79, 3 (2008), 763-813. https://doi.org/10.1016/j.matcom.2008.01.003

Dang Thi Oanh, Oleg Davydov, and Hoang Xuan Phu. 2017. Adaptive RBF-FD method for elliptic problems with point
singularities in 2D. Appl. Math. Comput. 313 (2017), 474-497. https://doi.org/10.1016/j.amc.2017.06.006

Eugenio Oniate, F. Perazzo, and J. Miquel. 2001. A finite point method for elasticity problems. Computers & Structures 79,
22-25(2001), 2151-2163. https://doi.org/10.1016/50045-7949(01)00067-0

Argyrios Petras, Leevan Ling, and Steven J. Ruuth. 2018. An RBF-FD closest point method for solving PDEs on surfaces. J.
Comput. Phys. 370 (2018), 43-57. https://doi.org/10.1016/j.jcp.2018.05.022

Martin Robinson and Maria Bruna. 2017. Particle-based and meshless methods with Aboria. SoftwareX 6 (2017), 172-178.
https://doi.org/10.1016/j.s0ftx.2017.07.002

scapos AG. [n.d.]. MESHFREE. https://www.meshfree.eu/. https://www.scapos.com/products/cae-tools/meshfree.html

Varun Shankar and Aaron L Fogelson. 2018. Hyperviscosity-based stabilization for radial basis function-finite difference
(RBF-FD) discretizations of advection—diffusion equations. Journal of computational physics 372 (2018), 616-639.

Varun Shankar, Robert M. Kirby, and Aaron L. Fogelson. 2018. Robust node generation for meshfree discretizations on
irregular domains and surfaces. SIAM F. Sci. Comput. 40, 4 (2018), 2584-2608. https://doi.org/10.1137/17m114090x

Jure Slak and Gregor Kosec. 2018. Parallel coordinate free implementation of local meshless method. In MIPRO 2018: 41st
International Convention on Information and Communication Technology, Electronics and Microelectronics, May 21-25,
2018, Opatija, Croatia (2018-05-23) (MIPRO proceedings), Karolj Skala (Ed.). IEEE, Croatian Society for Information and
Communication Technology, Electronics and Microelectronics, 194-200. https://doi.org/10.23919/mipro.2018.8400034

Jure Slak and Gregor Kosec. 2019a. On generation of node distributions for meshless PDE discretizations. SIAM Journal on
Scientific Computing 41, 5 (Oct. 2019), A3202-A3229. https://doi.org/10.1137/18M1231456

Jure Slak and Gregor Kosec. 2019b. Refined meshless local strong form solution of Cauchy-Navier equation on an irregular
domain. Engineering Analysis with Boundary Elements 100 (mar 2019), 3—-13. https://doi.org/10.1016/j.enganabound.2018.
01.001

Pratik Suchde and JAtrg Kuhnert. 2019. A meshfree generalized finite difference method for surface PDEs. Computers &
Mathematics with Applications 78, 8 (oct 2019), 2789-2805. https://doi.org/10.1016/j.camwa.2019.04.030

Sudarshan Tiwari and Jérg Kuhnert. 2003. Finite pointset method based on the projection method for simulations of
the incompressible Navier-Stokes equations. In Meshfree methods for partial differential equations. Springer, 373-387.
https://doi.org/10.1007/978-3-642-56103-0_26

A.1 Tolstykh and D. A. Shirobokov. 2003. On using radial basis functions in a 4AIffinite difference modeaAl with applications
to elasticity problems. Computational Mechanics 33, 1 (2003), 68-79. https://doi.org/10.1007/s00466-003-0501-9

Kiera van der Sande and Bengt Fornberg. 2019. Fast variable density 3-D node generation. arXiv:1906.00636 [math.NA]
(2019).

Cheng-An Wang, Hamou Sadat, and Christian Prax. 2012. A new meshless approach for three dimensional fluid flow and
related heat transfer problems. Computers & Fluids 69 (2012), 136-146.

ACM Trans. Math. Softw., Vol. 0, No. 0, Article 000. Publication date: TODO.


https://github.com/c42f/tinyformat
https://doi.org/10.1090/s0025-5718-98-00974-0
https://doi.org/10.1090/s0025-5718-98-00974-0
https://doi.org/10.1201/9781420040586
https://doi.org/10.1201/9781420040586
https://doi.org/10.1145/1731022.1731030
https://doi.org/10.1016/j.ijepes.2019.05.005
https://doi.org/10.1016/j.ijepes.2019.05.005
http://www.midasmeshfree.com/
https://doi.org/10.1007/s11075-012-9614-6
https://doi.org/10.1016/j.matcom.2008.01.003
https://doi.org/10.1016/j.amc.2017.06.006
https://doi.org/10.1016/s0045-7949(01)00067-0
https://doi.org/10.1016/j.jcp.2018.05.022
https://doi.org/10.1016/j.softx.2017.07.002
https://www.scapos.com/products/cae-tools/meshfree.html
https://doi.org/10.1137/17m114090x
https://doi.org/10.23919/mipro.2018.8400034
https://doi.org/10.1137/18M1231456
https://doi.org/10.1016/j.enganabound.2018.01.001
https://doi.org/10.1016/j.enganabound.2018.01.001
https://doi.org/10.1016/j.camwa.2019.04.030
https://doi.org/10.1007/978-3-642-56103-0_26
https://doi.org/10.1007/s00466-003-0501-9

000:22 Slak and Kosec

Peng Wang, Yonghao Zhang, and Zhaoli Guo. 2017. Numerical study of three-dimensional natural convection in a
cubical cavity at high Rayleigh numbers. Int. J. Heat Mass Transfer 113 (2017), 217-228. https://doi.org/10.1016/j.
ijheatmasstransfer.2017.05.057

Holger Wendland. 2004. Scattered data approximation. Vol. 17. Cambridge university press.

ACM Trans. Math. Softw., Vol. 0, No. 0, Article 000. Publication date: TODO.


https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.057
https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.057

	Abstract
	1 Introduction
	2 Strong from mesh-free methods
	2.1 Domain discretization
	2.2 Differential operator discretization
	2.3 PDE discretization

	3 Software description
	3.1 Domains
	3.2 Approximations
	3.3 Operators
	3.4 Miscellaneous

	4 Examples
	4.1 Linear elasticity
	4.2 Simulation of natural convection

	5 Benchmarks
	6 Conclusions and outlook
	Acknowledgments
	References

